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ABSTRACT 

Over the last two decades, research in Unmanned Vehicles (UV) has rapidly progressed and become more influenced by 
the field of biological sciences. Researchers have been investigating mechanical aspects of varying species to improve 
UV air and ground intrinsic mobility, they have been exploring the computational aspects of the brain for the 
development of pattern recognition and decision algorithms and they have been exploring perception capabilities of 
numerous animals and insects. This paper describes a 3 month exploratory applied research effort performed at the US 
ARMY Research, Development and Engineering Command's (RDECOM) Tank Automotive Research, Development 
and Engineering Center (TARDEC) in the area of biologically inspired spectrally augmented feature selection for robotic 
visual odometry. The motivation for this applied research was to develop a feasibility analysis
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 on multi-spectrally 
queued feature selection, with improved temporal stability, for the purposes of visual odometry. The intended 
application is future semi-autonomous Unmanned Ground Vehicle (UGV) control as the richness of data sets required to 
enable human like behavior in these systems has yet to be defined. 

1. INTRODUCTION 
1.1 Uses of Autonomous Vehicles 

Autonomous vehicles have a wide range of possible applications.  In military situations, autonomous vehicles are valued 
for their ability to keep Soldiers far away from danger.  A robot can inspect and disarm a bomb without the need for 
physical human interaction with explosive materials.  Additionally, a UGV can serve as a scout and reconnaissance asset 
and provide vital operational information about a situation without putting lives on the line.  Ideally, as UGVs become 
more advanced they can perform other dangerous tasks to further remove Soldiers from harms-way.    In order for this to 
be possible further UGV research and development is required in a multitude of areas including navigation, sensing and 
computation.   

Another important application of autonomous systems is in consumer vehicles.  One of the most popular new 
developments is automatic parallel parking.  Using sensors, the car is able to undertake this somewhat difficult task on 
its own.  Also, systems exist today that allow vehicles to avoid collision with objects in their environment without 
human input.  This is just a glimpse of what engineers are hoping for in the future.   

1.2 Biological Influence  

Autonomous vehicles are becoming more of a possibility in our world as technological advances are made and the 
capabilities of these systems improve.  However, in order for autonomous vehicles to operate effectively they require, 
among other things, a strong set of perceptual systems and a robust set of navigation techniques to intelligently traverse 
their terrain.  While a variety sensory and navigation techniques have been extensively employed [1, 2] there still exist 
methods utilized by biological systems yet to be fully exploited for robotic navigation (e.g. olfaction, pheromones, etc.)   

The mantis shrimp is considered to have the most sophisticated visual system of any species in the animal kingdom [3].  
It has the ability to see and discriminate objects in a multitude of wavelengths as well as with acute depth perception.  
While it is an open research question as to what capabilities this advanced perception system provides, scientists 
speculate that it can be for communication, hunting, or navigational purposes.  This applied research effort was 
influenced by the potential navigational advantages that such a unique visual system could provide and thus set out to 
emulate and provide a feasibility analysis.       

We have developed a system which integrates a hyperspectral sensor with LADAR to track the movement of an 
equipped vehicle using a method known as visual odometry.  By using the hyperspectral sensor, the vehicle can track 
objects based on their material, rather than being limited to features such as shape or color.   
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1.3 System Summary and Literature Influences 

We have developed a new system which can track a vehicle’s movement through the use of a hyperspectral sensor and 
LADAR.  Visual odometry is a means of tracking your movement by observing the motion of objects around you.   

A key component of visual odometry is tracking features from frame to frame.  Many trackable features tend to be 
corners.  A commonly used corner detection algorithm was developed by Harris [4].  The basic idea used in this method 
locates points where the surrounding neighborhood show edges in more than one direction.  Shi and Tomasi [5] later 
refined this algorithm and claimed that a feature was good as long as the smaller of two eigenvalues was greater than a 
minimum threshold. 

In [6], the authors assumed that a corner looks like a blurred wedge and then computed attributes of the wedge (the 
amplitude, angle and blur).  In [7], the authors generalized that work and proposed calculating corner strength by looking 
at pixel values within a disc.  They calculated the proportion of pixels whose intensity value is with the disc’s center, or 
nucleus.  The pixels that have a value closer to the nucleus receive a higher score.  They called this measure the USAN, 
of the Univalue Segment Assimilating Nucleus.  If the USAN has a low value, then it is indicative that the USAN is a 
corner because it is different than its surroundings.  These candidates are then run through another test to winnow out 
bad candidates and the resulting USANS make up the SUSAN, or Smallest USAN. 

FAST [8], or Features from Accelerated Segment Test, considers the pixels inside a Bresenham circle (the midpoint 
circle algorithm) with a radius r, around a candidate point.  If there are n contiguous pixels that are all brighter than the 
nucleus by threshold value t, then the nucleus is considered to be a feature.  SIFT [9] (Scale-Invariant Feature 
Transform) and SURF [10] (Speeded-Up Robust Features) are two types of blob detection algorithms.  This class of 
algorithms detects points or regions in an image that are either brighter or darker than their surroundings.  Both SIFT and 
SURF output a descriptor that is unique for each feature point.  Once features have been extracted, the next step is to 
match them from frame to frame.  Common approaches in literature include 2D correlation and Sum of Squared 
Differences [11] for the corner detectors and nearest neighbor [12] and kd-trees for features that have a descriptor vector. 

After features have been extracted and matched, the next step in a visual odometry system is calculate the motion from 
frame to frame [13].  This step can be troublesome if there are incorrect matches in the features from frame to frame 
which can be due from the resolution of the camera or if the terrain doesn’t have enough distinguishable features.  This 
paper explored the use of a hyperspectral camera to determine if more reliable features can be found.  

Using the hyperspectral sensor we can match up targets which relate to one another from one image to the next, and then 
by using the LADAR data, we are able to calculate the location of each object with respect to the vehicle.  By noting 
these changes in location of multiple objects, we are able to calculate our change in position.   

1.4 Other Odometry Sensors/Methods 

GPS is commonly used in autonomous systems because it does not accumulate error over time.  The drawback however 
is its reliance on a satellite signal, limiting its application to outdoor use.  Stereo vision cameras can be used as an 
alternative to LADAR.  By measuring the disparity between the two camera views, it is possible to roughly determine 
the distance an object is from the camera.  This is faster but less accurate than the LADAR. 

There are different methods known as dead reckoning which allow you to track the movement of a vehicle.  They 
usually involve measuring the rotation of the wheels or the speed and travel time of an inertial sensor. When these 
methods are used on their own, they accumulate error over time, however when combined with other sensors like GPS, 
they work together to give more accurate results. 

2. HARDWARE 
2.1 Hyperspectral Imager 

Typical cameras record a single intensity value for red, green, and blue light.  A hyperspectral imager breaks the 
spectrum of light into much smaller and more discrete bands in order to form a detailed spectral pattern for every pixel in 
the image.  This process builds a cube of information, each layer of which is composed of a different segment of the 
spectrum.  Every type of material has a slightly different spectral pattern, so by recording a detailed spectral image, we 
can use this information to determine the material of each object in the scene. 



 
 

 
 

Hardware 
Hyperspectral Imager  
Spectral Band .43-.9 microns 
# of Bands 120 
Spatial Resolution 640x640 
Field of View 5 degrees 
Capture Time about 5 seconds 
 
LADAR  
Angular Resolution 1 to .25 degrees 
Range 80 meters 
Field of View 180 degrees 
Response Time 13 to 53 ms 

There are many current uses of hyperspectral imaging in various fields of study.  Chemical analysis, identifying crop 
health, biological analysis, target discrimination, material mapping, and mineral deposit analysis are just a few of the 
many applications which utilize this technology. 

2.2 LADAR 

LADAR, or Laser Detection and Ranging, traces a laser beam across a single plane, recording distance values at constant 
angular intervals.  By incorporating a tilting system, the entire field of view is able to be scanned.  Knowing the current 
angular interval of the laser, distance to an object returned by the laser, and angle of the tilt system, a map of the scene 
and the coordinates of any given object is able to be triangulated.  LADAR is a commonly used device in autonomous 
vehicle guidance.  Typically it is used in a fixed position and multiple LADAR systems are used to measure each axis.  It 
is useful for obstacle avoidance; however it typically requires the cooperation of other sensors in order to be used for 
vehicle guidance.  Details of both the Hyperspectral Imager and LADAR used in this effort are provided in Table 1. 

 

Table 1. Hardware specs. 

 

 

 

 

 

 

 

 

 

 

3. ALGORITHMS 
There are three different programs that are used to get from the initial hyperspectral image and LADAR data to the final 
measurements of vehicle rotation and translation.  Our current method for calculating movement is all post processed 
rather than being done in real time. 

3.1 Hyperspectral Analysis 

Once a hyperspectral image has been taken, a spectral analysis software suite is used to process the entire hyperspectral 
cube and output a single image which can then be used by our algorithm to track the motion of the vehicle.  The 
SMACC (Sequential Maximum Angle Convex Cone) algorithm is used first to automatically create a list of spectra 
which represent various materials found in the scene.  This algorithm finds spectra which are the most different from one 
another in an image.  By specifying the number of spectra for it to find, and what tolerance to use when grouping them 
together, a variety of outputs can be generated which will greatly impact further image processing.  With these spectra, a 
unique spectral library is able to be built that can then be used to compare with other images from the same scene.  
Another algorithm called SAM (Spectral Angle Mapper) is used to do this comparison.  This process compares each 
pixel of an image to the spectral library that was created in order to group items of the same material together.  The 
benefit of this algorithm is that it is not affected by varying levels of illumination.  All items of the same material will be 
grouped together regardless of how bright or dark they are.  When evaluating spectral data, the SAM algorithm measures 
only the angle of the vector created by a given material and not its length.  By doing this, brightness does not affect the 
results of the calculation.  For those pixels that closely match one of the spectra in the library, they are marked with the 
index value of the matching library spectra.  The end result is a single image which is broken into multiple regions, 
based on the spectral signature (see Fig. 1). 



 
 

 
 

Another approach which can be taken is to manually select spectra from a given environment rather than using the 
SMACC tool.  This allows key elements of a known environment to be identified, providing more information to the 
robotic system.  For instance, given a hyperspectral image, it is possible to manually build a spectral library in which 
specific types of grass, leaves, bark, stones, pavement, and other materials are identified.  This gives the robot further 
understanding of what things it is seeing, rather than just the ability to match two objects from scene to scene.  The 
drawback of this approach is that it is likely only to operate correctly in the environment where it was developed.  New 
environments would be filled with new types of materials which may not be contained in your library.  The SMACC 
algorithm overcomes this issue by allowing the system to dynamically create a new library based on the current 
environment, without the need for human guidance. 

  
Fig. 1. The image on the left is an image taken with the hyperspectral camera.  The image on the right is the same image 

after it has been processed with hyperspectral analysis software and broken into separate regions using the Spectral 
Angle Mapper. 

3.2 LadarVision 

The LadarVision program is designed to be used for a number of LADAR applications.  This program was used to align 
the LADAR data with the hyperspectral image.  By changing a number of parameters, such as camera offset, tilt, 
rotation, and field of view, the two sets of data are able to be aligned.  Once this is calibrated, the LADAR data is 
reformatted to match the resolution of the hyperspectral camera, thereby giving a pixel to pixel correlation.  This 
reformatted LADAR data is then passed on to the tracking algorithm for the final phase of motion detection. 

3.3 Tracking Algorithm 

In order to track the motion of objects, pairs of images were compared in sequential order.  Once feature points were 
found for each of the images using the previous process, vectors were formed using one point from the first image as the 
origin and one point from the second image as its destination.  For every possible combination of points from the first 
image to the second, a reference vector was chosen.  Each reference vector was then compared with every other possible 
combination of vectors chosen in the same manner to see if the two vectors were similar.  To see if two vectors were 
similar, they were subtracted, and the difference vector had to be under a certain length to be considered a match.  The 
assumed direction of motion is chosen based on which reference vector had the highest number of matches to other 
vectors.  All the points which match this best vector of motion are then returned for further filtering.  The process is 
displayed in Fig 2.   

 



 
 

 
 

 
Fig. 2. The figure above shows the process that the tracking algorithm performs on each pair of images in the sequence. 

 

The bulk of the image processing that relates to tracking the motion of the vehicle is done with our algorithm.  The first 
task is to eliminate noisy data that is not worth tracking.  Any region whose area falls below a predefined threshold is 
eliminated.  This helps to remove regions which are likely to appear and disappear often.  Next, gaps within regions are 
filled.  This helps to keep the region more uniform from one image to the next.  The regions which remain after this 
filtering is complete are assumed to be good tracking targets.  Center points of each region are returned for the next 
phase of the tracking (see Fig 3).  

  
Fig. 3. The left image shows the target points which were selected from each region prior to any filtering, and the right 

image shows the image after small regions were filtered out. 

 

The first method of filtering is to eliminate any points that had multiple matching vectors coming from them or going to 
them.  An object can only have one true origin point and one true destination point, therefore one of the vectors that 
matched to that point must be incorrect.  It is not possible to reliably determine which of the matching vectors at that 
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point the correct one is, so all of the vectors at that point must be counted as invalid to ensure accurate results (see Fig4).  
The next method of filtering points is to get rid of any targets which are lacking LADAR data.  If either the origin point 
or the destination point is missing data, they both become useless because a pair of points is needed to determine motion.  
When recording LADAR data, some objects are beyond the detection range of the device and therefore leave a gap in the 
data.  As well, the slight difference in location of the LADAR sensor and the hyperspectral camera will cause some gaps 
in the LADAR data when correlating with the hyperspectral image due to their different perspectives.  The next step is to 
filter out values which are too different from the rest of the data.  These outliers are removed by finding the median 
value of all the good data points and checking the points against a certain tolerance value.  Once all of this has been 
done, the final vector is chosen based on points from the material with the highest number of matches (see Fig 5). 

All of these filtering techniques are used to help improve the reliability of the data gathered.  There are other approaches 
to performing visual odometry and feature point selection.  By combining the information gathered from this technique 
with that of another such as corner detection, it is possible to increase the reliability of the resulting data.  At a most 
basic level, results from each process could be compared to see whether they agree or not.  In a more useful sense, the 
information could be combined during the feature matching step.  The hypserspectral data can be used to check that two 
features matched by the corner detection approach have matching spectral data, allowing invalid matches to be more 
quickly detected.   

 
Fig. 4. The above dashed line is a given reference vector being compared to the solid line vectors.  On the left, there are 

multiple vectors originating from the same point, however they all match the reference vector because they are similar 
enough in size and direction.  On the right, there are multiple vectors with the same destination point which all match 
the reference vector for the same reason.  Since only one vector from each set can be correct, they are all discarded to 
prevent the use of false information in further calculations. 

 



 
 

 
 

  
Fig. 5. The image on the left is the first sequentially of a pair of images which are being compared, and the image on the 

right is the second.  Red dots show tracking points from the first image and blue dots show tracking points from the 
second image.  White lines connect pairs of points which are found to be a match using the calculated direction of 
motion. 

3.3.2 Calculating Movement 

First, rotation of the vehicle is calculated and to do this the orientation of two points from the first image are compared to 
the orientation of the same two points in the second image.  Take two points which are the furthest distance apart in the 
first image and make a vector connecting them.  Find the same two points in the second image and do the same.  Using 
the depth and horizontal separation of the points, find the angle between the points and the plane of the vehicle for each 
vector.  The difference between these two angles is equivalent to the rotation of the vehicle.  With knowledge of the 
rotation, it is possible to calculate the translation of the vehicle.  First, find the angle between one of the target points and 
the plane of the vehicle in the second position.  Add this angle to the vehicle’s angle of rotation to determine the angle to 
the target based on the first position’s coordinate axis.  Use this angle and the distance to the target to determine the 
distance in component form with respect to the first coordinate axis.  Add these components to the components from the 
first location to determine the complete translational movement (See Figs 6 & 7).  



 
 

 
 

 Fig. 6. The figure above shows two vehicle positions and two target positions.  The angles Θ1 and Θ2

 

 are formed by 
the plane of the two targets intersecting the plane of the vehicle.  Using these angles it is possible to determine the 
rotation of the vehicle between positions. 
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Fig. 7. The figure above shows two vehicle positions and a single target.  Using the calculated vehicle rotation and the 

LADAR distance and angle data, it is possible to calculate the translation of the vehicle between positions. 

 

4. TESTING AND RESULTS 
 
4.1 Method 

All of the testing was done on a manually driven vehicle rather than an autonomous platform.  Since the hyperspectral 
camera takes a few seconds to capture an image, the vehicle had to be stationary while taking each image otherwise it 
would cause too much distortion.  The engine vibration of the vehicle also had a noticeable effect on the clarity of 
images, so the vehicle was turned off while taking images.  A number of different locations were tested with various 
styles of scenery to simulate different situations.  For each different setting, a constant distance was measured and the 
vehicle was moved in a straight line at that increment. 

 

4.2 Observations and Results 

It seemed for the most part that either all the images from a given setting would work or none of them would.  A 
common reason for this was due to insufficient LADAR data.  The hyperspectral camera has a very narrow field of view, 
therefore requiring that it be a long distance away from the object.  The LADAR, however, has a maximum range of 80 
meters, and only seemed effective up to 50, so the objects must be relatively close.  The proper balance of the two is 
required in order to maintain valuable results.   

Some environments were more difficult to work with than others.  A metal post which doesn’t move or change shape is 
much easier to deal with than trees and bushes which have many small leaves and that move from image to image.  
Depending on the filtering parameters, this can be difficult to accurately match feature points between images, but after 
some calibration, these types of objects were able to be reliably tracked as well. 
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Given that this was simply a plausibility research effort, the process was only designed to measure the accuracy of the 
longitudinal displacement of the vehicle.  There were insufficient resources to accurately measure the lateral movement 
or the angular rotation; however it should be very small since the vehicle was always moving in a straight line.  The 
calculated angular rotation averaged about 1 degree and the lateral movement about 1 foot when moving a distance of 2 
meters forward.  It is reasonable to believe that the vehicle could have drifted by these amounts when driven 2 meters, so 
these values were found to be acceptable for the current level of testing. 

 

4.3 Approach Limitations and Considerations for Future Research 

There were a number of complications that we encountered throughout the development process that would need to be 
dealt with before the system could be applied to an autonomous vehicle.  Depending on the type of vehicle, where the 
system is mounted, and in what way the system is mounted, vehicle vibration may distort the clarity of images taken 
with the hyperspectral camera.  Mounting it further from the engine or having some sort of vibration absorption could be 
simple solutions to remedy this.  A difficulty in making this a widespread application is the extremely high price of 
hyperspectral cameras.  As mentioned before, the narrow field of view of the hyperspectral camera in combination with 
the short range of the LADAR strictly limits the operating range at which the system will work.  If either the LADAR 
had a further range or the hyperspectral camera had a wider view, this would no longer be an issue.  Other hardware may 
exist that would be more suitable for our application.  Above all else, the system is far too slow to be used on an 
autonomous vehicle.  The hyperspectral camera alone takes about 5 seconds to capture an image.  After that the target 
detection and image processing takes at least another 10 seconds.  There is no way an autonomous system could make 
use of the data with that much lag.  In order to fix this problem, a faster hyperspectral camera would need to be used.  
The program may also be improved and made more efficient to help cut down on time.  Due to the slow capture time, the 
vehicle must be stationary when taking an image or else it will turn into a useless blur.  If the hyperspectral camera were 
much faster, this may no longer be an issue.  Setting the camera focus and exposure time can be difficult, especially if 
the lighting conditions are changing frequently.  If the exposure is not set correctly, the images are likely to be saturated 
and no longer usable.  A hyperspectral camera may exist with some of these calibration features done automatically. 

5. CONCLUSION 
This plausibility study has shown that hyperspectral imaging can provide a set of feature data that can assist with feature 
stability for visual odometry. However the current hardware complications must be overcome before it could be used in 
an actual robotic application.  The data provided by this type of sensor is quite unique and is not typically available 
through the use of other devices.   This gives the robotic system the ability to perceive new aspects of the environment 
which complements data provided by other sensors.  By giving the system this new set of data, it is possible to develop 
more robust solutions and improve performance. 
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